skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hackebill, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the hadron-quark phase transition at finite density in the presence of a magnetic field taking into account the anisotropy created by a uniform magnetic field in the system’s equations of state. We find a new anisotropic equilibrium condition that will drive the first-order phase transition along the boundary between the two phases. Fixing the magnetic field in the hadronic phase, the phase transition is realized by increasing the baryonic chemical potential at zero-temperature. It is shown that the magnetic field is mildly boosted after the system transitions from the hadronic to the quark phase. The magnetic-field discontinuity between the two phases is supported by a surface density of magnetic monopoles, which accumulate at the boundary separating the two phases. The mechanism responsible for the monopole charge density generation is discussed. Each phase is found to be paramagnetic with higher magnetic susceptibility in the quark phase. The connection with the physics of neutron stars is highlighted throughout the paper. 
    more » « less